Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Large grazers modify vegetated ecosystems and are increasingly viewed as keystone species in trophic rewilding schemes. Yet, as their ecosystem influences are context‐dependent, a crucial challenge is identifying where grazers sustain, versus undermine, important ecosystem properties and their resilience.Previous work in diverse European saltmarshes found that, despite changing plant and invertebrate community structure, grazers do not suppress below‐ground properties, including soil organic carbon (SOC). We hypothesised that, in contrast, eastern US saltmarshes would be sensitive to large grazers as extensive areas are dominated by a single grass,Spartina alterniflora. We predicted that grazers would reduce above‐ and below‐groundSpartinabiomass, suppress invertebrate densities, shift soil texture and ultimately reduce SOC concentration.We tested our hypotheses using a replicated 51‐month large grazer (horse) exclusion experiment in Georgia, coupled with observations of 14 long‐term grazed sites, spanning ~1000 km of the eastern US coast.Grazer exclusion quickly led to increasedSpartinaheight, cover and flowering, and increased snail density. Changes in vegetation structure were reflected in modified soil texture (reduced sand, increased clay) and elevated root biomass, yet we found no response of SOC. Large grazer exclusion also reduced drought‐associated vegetation die‐off.We also observed vegetation shifts in sites along the eastern US seaboard where grazing has occurred for hundreds of years. Unlike in the exclusion experiment, long‐term grazing was associated with reduced SOC. A structural equation model implicated grazing by revealing reduced stem height as a key driver of reduced soil organic carbon.Synthesis: These results illustrate the context dependency of large grazer impacts on ecosystem properties in coastal wetlands. In contrast to well‐studied European marshes, eastern US marshes are dominated and structured by a single foundational grass species resulting in vegetation and soil properties being more sensitive to grazing. Coastal systems characterised by a single foundation species might be inherently vulnerable to large grazers and lack resilience in the face of other disturbances, underlining that frameworks to explain and predict large grazer impacts must account for geographic variation in ecosystem structure.more » « less
-
Facilitation cascades are chains of positive interactions that occur as frequently as trophic cascades, and are equally important drivers of ecosystem function where they involve the overlap of primary and secondary, or dependent, habitat-forming foundation species [cite]. Although it is well-recognized that the size and configuration of secondary foundation species’ patches are critical features modulating the ecological effects of facilitation cascades, the mechanisms governing their spatial distribution are often challenging to discern given that they operate across multiple spatial and temporal scales [cite]. We therefore combined regional surveys of southeastern US salt marsh geomorphology and invertebrate communities with a predator exclusion experiment to elucidate the drivers, both geomorphic and biotic, controlling the establishment, persistence, and ecosystem functioning impacts of a regionally-abundant facilitation cascade involving habitat-forming marsh cordgrass and aggregations of ribbed mussels. We discovered a hierarchy of physical and biological factors predictably controlling the strength and self-organization of this facilitation cascade across creekshed, landscape, and patch scales. These results significantly enhance our capacity to spatially predict coastal ecosystem function across scales based on easily identifiable metrics of geomorphology that are mechanistically linked to ecological processes [cite]. Replication of this approach across vegetated coastal ecosystems has the potential to support management efforts by elucidating the multi-scale linkages between geomorphology and ecology that, in turn, define spatially-explicit patterns in community assembly and ecosystem functioning.more » « less
-
Novel species of fungi described in this study include those from various countries as follows: Antartica , Cladosporium austrolitorale from coastal sea sand. Australia , Austroboletus yourkae on soil, Crepidotus innuopurpureus on dead wood, Curvularia stenotaphri from roots and leaves of Stenotaphrum secundatum and Thecaphora stajsicii from capsules of Oxalis radicosa. Belgium , Paraxerochrysium coryli (incl. Paraxerochrysium gen. nov.) from Corylus avellana. Brazil , Calvatia nordestina on soil, Didymella tabebuiicola from leaf spots on Tabebuia aurea, Fusarium subflagellisporum from hypertrophied floral and vegetative branches of Mangifera indica and Microdochium maculosum from living leaves of Digitaria insularis. Canada , Cuphophyllus bondii fromagrassland. Croatia , Mollisia inferiseptata from a rotten Laurus nobilis trunk. Cyprus , Amanita exilis oncalcareoussoil. Czech Republic , Cytospora hippophaicola from wood of symptomatic Vaccinium corymbosum. Denmark , Lasiosphaeria deviata on pieces of wood and herbaceousdebris. Dominican Republic , Calocybella goethei among grass on a lawn. France (Corsica) , Inocybe corsica onwetground. France (French Guiana) , Trechispora patawaensis on decayed branch of unknown angiosperm tree and Trechispora subregularis on decayed log of unknown angiosperm tree. Germany , Paramicrothecium sambuci (incl. Paramicrothecium gen. nov.)ondeadstemsof Sambucus nigra. India , Aureobasidium microtermitis from the gut of a Microtermes sp. termite, Laccaria diospyricola on soil and Phylloporia tamilnadensis on branches of Catunaregam spinosa . Iran , Pythium serotinoosporum from soil under Prunus dulcis. Italy , Pluteus brunneovenosus on twigs of broad leaved trees on the ground. Japan , Heterophoma rehmanniae on leaves of Rehmannia glutinosa f. hueichingensis. Kazakhstan , Murispora kazachstanica from healthy roots of Triticum aestivum. Namibia , Caespitomonium euphorbiae (incl. Caespitomonium gen. nov.)from stems of an Euphorbia sp. Netherlands , Alfaria junci, Myrmecridium junci, Myrmecridium juncicola, Myrmecridium juncigenum, Ophioceras junci, Paradinemasporium junci (incl. Paradinemasporium gen. nov.), Phialoseptomonium junci, Sporidesmiella juncicola, Xenopyricularia junci and Zaanenomyces quadripartis (incl. Zaanenomyces gen. nov.), fromdeadculmsof Juncus effusus, Cylindromonium everniae and Rhodoveronaea everniae from Evernia prunastri, Cyphellophora sambuci and Myrmecridium sambuci from Sambucus nigra, Kiflimonium junci, Saro cladium junci, Zaanenomyces moderatricis academiae and Zaanenomyces versatilis from dead culms of Juncus inflexus, Microcera physciae from Physcia tenella, Myrmecridium dactylidis from dead culms of Dactylis glomerata, Neochalara spiraeae and Sporidesmium spiraeae from leaves of Spiraea japonica, Neofabraea salicina from Salix sp., Paradissoconium narthecii (incl. Paradissoconium gen. nov.)from dead leaves of Narthecium ossifragum, Polyscytalum vaccinii from Vaccinium myrtillus, Pseudosoloacrosporiella cryptomeriae (incl. Pseudosoloacrosporiella gen. nov.)fromleavesof Cryptomeria japonica, Ramularia pararhabdospora from Plantago lanceolata, Sporidesmiella pini from needles of Pinus sylvestris and Xenoacrodontium juglandis (incl. Xenoacrodontium gen. nov. and Xenoacrodontiaceae fam. nov.)from Juglans regia . New Zealand , Cryptometrion metrosideri from twigs of Metrosideros sp., Coccomyces pycnophyllocladi from dead leaves of Phyllocladus alpinus, Hypoderma aliforme from fallen leaves Fuscopora solandri and Hypoderma subiculatum from dead leaves Phormium tenax. Norway , Neodevriesia kalakoutskii from permafrost and Variabilispora viridis from driftwood of Picea abies. Portugal , Entomortierella hereditatis from abio film covering adeteriorated limestone wall. Russia , Colpoma junipericola from needles of Juniperus sabina, Entoloma cinnamomeum on soil in grasslands, Entoloma verae on soil in grasslands, Hyphodermella pallidostraminea on a dry dead branch of Actinidia sp., Lepiota sayanensis onlitterinamixedforest, Papiliotrema horticola from Malus communis , Paramacroventuria ribis (incl. Paramacroventuria gen. nov.)fromleaves of Ribes aureum and Paramyrothecium lathyri from leaves of Lathyrus tuberosus. South Africa , Harzia combreti from leaf litter of Combretum collinum ssp. sulvense, Penicillium xyleborini from Xyleborinus saxesenii , Phaeoisaria dalbergiae from bark of Dalbergia armata, Protocreopsis euphorbiae from leaf litter of Euphorbia ingens and Roigiella syzygii from twigs of Syzygium chordatum . Spain , Genea zamorana on sandy soil, Gymnopus nigrescens on Scleropodium touretii, Hesperomyces parexochomi on Parexochomus quadriplagiatus, Paraphoma variabilis from dung, Phaeococcomyces kinklidomatophilus from a blackened metal railing of an industrial warehouse and Tuber suaveolens in soil under Quercus faginea. Svalbard and Jan Mayen , Inocybe nivea associated with Salix polaris. Thailand , Biscogniauxia whalleyi oncorticatedwood. UK , Parasitella quercicola from Quercus robur. USA , Aspergillus arizonicus from indoor air in a hospital, Caeliomyces tampanus (incl. Caeliomyces gen. nov.)fromoffice dust, Cippumomyces mortalis (incl. Cippumomyces gen. nov.)fromatombstone, Cylindrium desperesense from air in a store, Tetracoccosporium pseudoaerium from air sample in house, Toxicocladosporium glendoranum from air in a brick room, Toxicocladosporium losalamitosense from air in a classroom, Valsonectria portsmouthensis from airinmen'slockerroomand Varicosporellopsis americana from sludge in a water reservoir. Vietnam , Entoloma kovalenkoi on rotten wood, Fusarium chuoi inside seed of Musa itinerans , Micropsalliota albofelina on soil in tropical evergreen mixed forest sand Phytophthora docyniae from soil and roots of Docynia indica. Morphological and culture characteristics are supported by DNA barcodes.more » « less
An official website of the United States government

Full Text Available